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Estimation in the General Incomplete Block Design with 
Applications to the Analysis of Mating Structures 

THOMAS R. BEMENT, V. JAYARAMA KRISHNA, GEORGE A. MILLIKEN and ROBERT R. SCHALLES 

Kansas State University, Manhattan, Kansas (USA) 

Summary. Models for analysing data for two commonly used sampling schemes involving inbreeding and environ- 
mental effects is considered. The general incomplete block model is utilized where nlating types are equated to incom- 
plete blocks. The models allow for varying degrees of inbreeding within mating types and between mating types. The 
analysis is such as to remove some of the confounding of inbreeding and environmental effects. The models are for- 
mulated in matrix notation utilizing pseudoinverses of matrices. Intrablock and interblock estimates of environmental 
effects or treatment effects are obtained with a suggestion as how one might combine the two estimates. An example 
is presented to demonstrate the computations. 

i. Introduction 

Examination of the breeding structure in a live- 
stock population reveals different forms of departure 
from the random mating scheme, perhaps because of 
planned consanguineous matings or extensive use of 
proven sires in small populations. The type of samp- 
ling scheme adapted to select progeny for perfor- 
mance testing will influence the choice of mating 
design and thus, the model to be fitted. Also, as the 
environment changes, inbreeding increases; there- 
fore inbreeding and year or environmental effects 
are confounded. That phenomenon must also be 
accounted for by choice of the model. We here exa- 
mined the characteristics of two commonly used 
sampling schemes. 

1.1. One  O / / s p r i n g  / r o m  each M a t i n g  

In this situation a given combination of ~ •  
(male by female), a mating type, yields only one 
progeny. The progeny are identified as M I P . . . M , P ,  
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where M 1 P  denotes the progeny from mating 1 .. . . .  
and M , P  denotes the progeny from mating n. The 
variance of a resulting progeny is weighted by I - - /~  
where / ,  denotes the inbreeding coefficient of the ith 
progeny computed from Wright 's  path coefficients. 
That weighting procedure unconfounds some of the 
environmental and inbreeding effects and enables 
a less-biased estimate of a 2 to be obtained. Thus, the 
variance of a progeny is a=(l --[~) where a ~ is the 
variance of noninbred progeny and the covariance 
between two progeny is denoted by Cov M~M~,  which 
is computed from the genetic relationship between 
mating types Mi and M~ (Table 1). The resulting 
covariance structure of the progeny depends on which 
type of mating scheme is used. We discuss two 
mating schemes. 

Case  1: R a n d o m  M a t i n g  P o p u l a t i o n  

If the progeny are derived from a random mating 
population, then /i = 0, Cov M , M j  = 0, and the 
covariance structure of the progeny (Table t) has the 
form of an identity matrix denoted b y / .  

Case  2:  N o n r a n d o m  M a t i n g  P o p u l a t i o n  

If the progeny are from a nonrandom mating popu- 
lation, then the mates have co-ancestry and the pro- 

Table 1. Relat ionship  between progeny 

Progeny M 1 P  ]~i2 P Mi  P ]~lnP Title . . . . .  

M 1 P  a~(t -- f~) 
M = P  Coy M,aM 1 

M i P  Cov M i M  1 

M n P  Coy M , , M  1 

Cov M 1 M ,  a . Cov M 1 M  i . . . Coy M 1 M n  

a2(1 -- f~) . Cov M u M  i . . . Coy M=M,~ 

CovMiM = a2(1 --  J~) . , .  CovMiMn 

COVMnM 2 . . .  CovMnil/[ i . . . a2(1 --  f;{) 
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geny are inbred. That reduces the genetic variance 
of an individual, and also some of the mating types 
may be related; thus, some Coy M~M~ ~ O. 

A linear model for describing the progeny perform- 
ance can be written 

y = x ~ v  + e ,  (t.o) 

where y is a n • t vector of observable random varia- 
bles (i.e., values of the trait measured), Xz is a n • t 
design matrix of rank t, denoting the presence or 
absence of a treatment (such a year born, sex, breed, 
etc.),/, is a t • 1 vector of unknown treatment means, 
and e is a n • t vector of unobservable random variab- 
les with mean O and dispersion matrix a~C. 

In case 1, C = I and the best linear unbiased esti- 
mator  (b.l.u.e.) of/~ can always be obtained by ordi- 
nary least squares as 

In case 2, C =~ I. Thus, once the elements of (7 
have been obtained/ ,  can be computed via weighted 
least squares as /~ = (X;,C-~X2) -~ X ; C - t y ,  which is 
the b.l.u.e, of / ,  for case 2. 

1.2. T w o  or more P r o g e n y / r o m  each M a t i n g  

A mating type that  occurs more than once in suc- 
cessive breeding seasons or years is designated as 
a repeat mating and i t yields more than one progeny. 
The progeny from a repeat mating are fullsibs. When 
different matings give raise to such groups of full 
sibs, the aggregate of these full sib groups can be 
arranged as in Table 2, where M ~ P ,  denotes the ith 
progeny from the fth mating type. If the progeny 
are derived from a nonrandom mating population, 
the inbreeding tends to reduce t he  variance of indi- 
viduals within a full sib group. There can be a rela-" 
tionship between mating types and when it occurs it 
must also be accounted for in the model. Let M ~ P  i, 
M i P  ~ . . . . .  M 1 P ,  , denote the n 1 full sibs from mating 
type t. The genetic correlations among the full sibs 

the General Incomplete Block Design t l l  

for mating type t are represented in this matrix 
(where M i P  1 . . . . .  M1P, ,  ~ are the row and column de- 
notations, meaning mating type t --  progeny t . . . . .  
mating type I --  progeny nl); 

M1P1 M1P2 . . .  MIP,~ , 

M~P~ .5(t + [~) t . . . .  5(t + 
�9 , �9 " , .  �9 

M~P,~, .5(1 -~- /1) . 5 ( ]  -~- /1) " ' "  "l 

To reduce the confounding between environment and 
inbreeding, this matrix is weighted by a~(t --/~), 
and the matrix in Table 2 is used in the analysis to 
account for the within-full-sib-group relationships. 
Also possible relationships between mating types must 
be included in the model. The matrix of variances 
and covariances for mating types is: 

M I M, M,  

M i ~ a~ Cov M i M  2 . . .  Cov MiM,~ ~ MiI C~ : . c~  M # "  / . (1.t) 

M~ [ C o v  M , , M  i Coy M,,M~ a~ _] 

where a~ denotes the variance between unrelated 
mating types and Cow M , M j  denotes the genetic 
relationship between mating types M, and MI. 

Case 3: If the progeny are derived from a random 
mating population, then [~ = 0 and Cov M ~ M  I = O. 
The diagonal elements of Table 2 will be t.0 and the 
off-diagonal elements .50, which are coefficients of 
relationships among fullsibs. The between mating 
type covariance structure will be a~II,~ since there is no 
c-ancestry among mates. 

Case 4: If the progeny are derived from a nonran- 
dom mating population, then /~ ~ 0 and Cov M I M  i 

0, depending on the degree of relationship. Thus, 
the structure of the matrix in Table 2, as well as the 

Table 2. Within  mating type genetic relationships 

MIP1 . . .  MIP,,1 . . .  M i P  1 MiP, ,  ~ . . .  M,~P~ . . .  MnP,,~ 

M I P  1 I -- f~ . . . .  5(I --fi) (1 +A) O 

M i P m  .5(1 --f~)(1+/1) �9 �9 t --f~ O 

M j P i  0 0 t -- 1~ . .  

MiPn  j O O .5(1--f]) (l+h') �9 �9 

Mn P i  O O O 

M n  Pn ~ 0 0 0 

o o o 

o o o 

.5(I E f t ) 0 + ~ ' )  o o 

l - f ~  o 0 

o 1 - fn ~ . . . .  5(1 -f~)  (I +fn) 

o .5(1 - f ~ ) ( l + f , )  . . . I --f~ 
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between mating type covariance structure, is changed. 
As inbreeding increases, the genetic variance within 
a block or full-sib group shifts proport ionately to 
between blocks or matings. In a completely inbred 
population there will be no genetic variation within 
a full-sib group. Because that  phenomenon tends to 
decrease environmental  variation, we can use the 
matr ix of within mating type relationships in a weight- 
ed analysis to unconfound some of the environmental  
and inbreeding effects. 

A linear model for the general incomplete block 
design with random block (mating types and blocks 
are synonymous) effects to describe the progeny per- 
formance can be writ ten 

y = XI~ + Xzu + e ,  (t.2) 
where 

X~ is a n • b design matr ix  of rank b, denoting the 
presence of a block. 
is a b • 1 vector of unobservable random variables 
denoting block errors with mean O and variance 
a~V b, and 

X2,/,, e are as defined in model (l.0). 

In this case, V b denotes relationships between 
mating types as exhibited in (t.2). The matr ix  C, 
which consists of the within mating type relationships, 
is the block diagonal matr ix  exhibited in Table 2. In 
addition, the random vectors e and ~ are assumed to 
be independently distributed and often it is assumed 
that  e and ~ are multivariate normal random vectors. 
We also assume there are k, experimental units in the 
i th block. 

The problem of interest is to estimate the vector/ , .  
I t  is well known (see, for example, John t971 or 
Graybill t96Q that  under conditions imposed on 
model (1.2) two independent estimators o f / ,  exist: 
intrablock and interblock. The intrablock estimator 
o f / ,  can be considered to have arisen from a linear 
model obtained by  equating within block deviations 
from block means to their expectations. Under those 
conditions and where C = / ,  the b.l.u.e, o f / ,  based 
on the intrablock model is always available. When 
C :# I ,  this intrablock model using weighted least 
squares, (i.e., accounting for the covariance matr ix 
C), yields the estimators of / ,  which are b.l.u.e. 

The interblock estimator o f / ,  is derived from the 
linear model by  equating block totals to their expec- 
tations. In Case 3, where Cov M ~ M , - - - - 0  implying 
that  V b = I, the b.l.u.e, o f / ,  can be obtained using 
this model. In case 4, where Coy M ~ M t  is greater 
than 0, implying a V b # I, a straightforward solution 
for obtaining/~ does not exist. This interblock estima- 
tor will have greater variance and in general may not 
be b.l.u.e. When the number of blocks is quite large, 
such an estimator could be a valuable source of in- 
formation and should be considered. This paper 
presents a new matr ix formulation method for esti- 
mat ing/ ,  in (!.2) when V b and C are of the form just 

described and also suggests a way to combine the 
intra and interblock estimators. 

2. T h e  Intrablock  and In terb lock  E s t i m a t o r s  

When the matr ix  C is the ident i ty  matrix, the usual 
intrablock solution for/* in (1.2) is obtained by solv- 
ing the intrablock or reduced normal equations for/,.  
These reduced normal equations are obtained by 
treating ~ as a vector of fixed effects, using the /~ 
normal equations to solve for /~ in terms of fi and 
substituting this solution into the fi equations. The 
following theorem (Bement i972) shows that  the 
technique is equivalent to obtaining fi from the 
model 

ff  - x l x ; )  y = (I - x l x ; )  x e ,  + e l ,  (2.t) 
where 

E(e l )  = O and Var (e~) = a~(I - -  X 1 X ?  ) . 

The (--) superscript on a matr ix  denotes the Moore- 
Penrose (see Graybill t969) generalized inverse of 
tha t  matrix.  

Definition 2.t. Model (2.1) will be called the intra- 
block model. 

Theorem 2.t. The reduced normal equations are 
the same as the equations for the intrablock model. 

Proof: Applying the technique mentioned above 
for obtaining the reduced normal equations, we write 
model (t . t)  in the form 

The normal equations are 

I X;yj  = X Xd 

From (2.2), the ~ equations are 

+ x;x  = x ; y  (2.3) 
and the/7 equations are 

X z X ~  + X 2 X ~  = X ; y .  (2.4) 

Solving for ~ in (2.3) we obtain the solution 

= (X;Xl)- X ; ( y  - -  X ~ )  
o r  

= X ; ( y  - -  X2fi  ) . (2.5) 

Substituting (2.5) into (2.4) we obtain 

X~X~XT (y  - -  X~f,) + X ~ X g ,  = X ; y  
o r  

X ; ( I  - -  X~X7)  X2fi  ----- X ; ( I  - -  X ~ X ; )  y . (2.6) 

But (2.6) is the set of normal equations for the intra- 
block model, so the proof is complete. 

If ;~'/, is estimable in (2.1), then it is well known that  
the b.l.u.e, of it' v in that  model is Z'fi where 

fi = [(I -- X l X ; )  X2]- (] - -  X l X ~ )  y = 
= [(I  - -  X~X~)  X , ] -  y .  (2.7) 
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The b.l.u.e, of 1.'/, can also be expressed as 

Z'fi = ~,'X; (I  -- X~Xy) y ,  

where m is any  solution to 

Z = X;(t  -- X l X y  ) X ~ .  

From the preceding discussion it is clear tha t  the 
intrablock est imate o f / ,  in no way depends on the 
dispersion structure of / / .  

If  the matr ix,  C, is not the ident i ty  matr ix,  then 

Var (el) = a~e(I --  X1XT) C( I  --  X I X ;  ) ---- G ,  

say, and the normal  equations from (2.t) will not in 
general lead to the intrablock b.l.u.e. 's of estimable 
linear combinations. In this case the structure of G 
must  be taken into account. If ~.'p is estimable in 
(2.t), its b.l.u.e, in tha t  model is ~.'fi where 

# = Vx.W' ( F c r ) - i  FX~]- X~F' (FCF')-I FU 

and where the n - -  b • n mat r ix  F is defined by  

F'F = I - x l x 7  

and 

FF'  = I n - b  �9 

The mat r ix  F is of the form 

F = 

I F 1 . . . .  0 -1  

:d 
where F, is k~ - -  1 • k,~ and 

1 t 
0 . . . 

t t 2 
- - -  

g l  z 
m 

o 

0 

1 ( k - l )  t t 

m 

Recall tha t  k, is the number  of experimental  units 
in block i or progeny in mat ing i. 

The est imation of the variance component ,  a~ will 
now be considered. We first t reat  the case where 
C = I .  

The error sum of squares for the model (2.t) is 

Q = y ' ( l  - x l x - ; )  { I  - ( I  - x l x - ; ) x ~ •  

[ ( ~ "  - -  X I X T )  X 2 ] -  } ( l  - -  X l X ; )  y = y ' ( I  - -  X X - )  y 

where 
x = (xl,  x2 ) .  

The expected value of Q is 

E(Q) = a~tr (I  --  X X - )  

= a~(n --  R(X) ) .  

If  the design is connected, then (see John 1971 or 
Graybill t96t)  

R ( X )  ---- b + t - -  t .  

I t  follows tha t  an est imate of a ~ , is 

e n -- R(X) 

and in case of a connected design, 

^2 Q 
ae = n - - t - - b +  1 

That  es t imator  is s imply the error mean square 
obtained in the usual intrablock analysis. 

Next  consider the case where C # I.  As before, let 

Q = y ' ( I  - x x - )  y .  

In this case, the expected value of Q is 

E(Q) = a~tr [(I - X X - )  C] 

= ~ { t r ( C )  - tr  (• 
The est imate of a ~ is then g 

^~ Q 
O" e _---2_ 

tr(C) -- tr(XX-C) " 

Now, let us consider the interblock est imation of 
t*. The usual interblock est imate comes from the 
normal equations derived from the model obtained 
by  equat ing the "r of block totals, X~y, to its 
expectat ion.  This model, which we shall call the 
interblock model, is 

X~y = X~X2# + e~ (2.8) 

o r  

z =  X v  + e~ 

where 
t 

Z = X t y ,  N = X l X 2 ,  E(e2) = O 

and 

Vat(e2) = z~ = a] diag (k,) V b diag (k,) + ~X~CX~ .  

The notation,  diag(.), indicates a diagonal matr ix  with 
diagonal elements as given in the argument .  N is the 
transpose of the incidence matr ix .  The form of z~ 
follows directly from the fact tha t  X ~ X  1 = diag (k,). 
If  ) .~  is estimable in (2.8), its b.l.u.e, is ). '~ where 

v = ( S  -'/2 x ; x 2 ) -  x ~ x l  S -1 y | 

= ( X 2 X  1 Z -1 X ; X $ ) - X 2 X  1 Z -1 X ; y  J ( 2 . 9 )  

= ( X '  Z -1 N ) -  N '  ,~-1 z .  

If N is a full rank  matr ix,  then ~ can be expressed as 

= (X' 22 -1 X) - i  X' 2; -1 z .  (2.t0) 

The b.l.u.e, of ~.'~ from (2.8) can also be writ ten as 

Z'l~ = q ' N  S -1 z 

where ~ is any solution to 

, ~ =  N ' z ~ . , - 1 N Q .  

Theoret. Appl. Genetics, Vol. 45, No. 3 
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In general, the interblock b.l.u.e, of V cannot be 
calculated because ~Y" is unknown. In this case we 
may obtain a weighted interblock estimate o f / ,  by 
using an estimated ~7. To estimate Z we must first 
estimate a~ and a~. The estimate of a~ obtained in 
the intrablock analysis can be used here, and the 
component a~ can be estimated as follows. 

Let the matrix A be defined 

A = I - - N N - .  

Then, with respect to the interbloek model, 

E ( z ' A z )  = a~tr [A diag (k,) V b diag (ki)] + 
+ a~tr [AX[CXI] = 

i=t j=l 

where A = [(a~)3 and V~ = [(v~)]. An estimate of a~ 
is then 

z ' A z  -- ~2 e trFAX'ICX1] 

i=1 j=l 

where ~ is obtained from the intrablock analysis. 
Thus, an estimate of ~ is 

._~ = ~ diag (k,) Vb diag (k,) + ~ X ; C X  1 . 

A weighted least squares interblock estimator of tt is 
then 

~ - -  ( ~ - ' ~  X;X~)-  X~X~ ~ - '  X ;  u 

(x xl ^ - 1  , - , . = X XIX2) X2X1 ~_.-1 Xly  

Since two estimators of/t are available, they can be 
combined into a single estimator, which in some cases 
may have smaller variance than either of the two. 

Let the covariance matrix of/~ be estimated by 2~1 

and the covariance matrix of ~ be estimated by 3~r 2. 
Then, the best combined estimator for / ,  based upon 
those estimated weights, is 

and has an estimated covariance matrix 

Va (E) = (m? + 
This particular estimator should contain more infor- 
mation than either/~ or ~ ,  but its exact distributio- 
nal properties are not known. The combined estima- 
tor is presented for completeness. 

A computer programme to obtain fi from the intra- 
block model is available at Kansas State University 
which can handle 120 levels of any combination of 
variables in the Xl matrix. The programme has 
worked with 3 t 5 observations, but  can be adapted to 
handle 500 observations. To obtain ~ from Inter- 
block model the above programme can be easily 
modified to fit t20 blocks or matings. 

3" E x a m p l e  

We extracted some data from Krishna (1973) to 
demonstrate the analysis. The data (in Table 3) 

Table 3. Data for the example 

Sire Cow f Calf Birthdate Birthweight 

501 309 8.1% 123 4/1/61 72 
231 4/21/62 81 
319 3/29/63 80 

5Ol 753 20.0% 039 4/7/60 61 
t29 4/t4/61 63 
251 6/17/62 72 

637 601 34.4% 067 5/29/60 67 
t 55 5/29/61 69 
379 6/4/63 83 

637 29 23.7% 071 6/3/60 63 
149 5/21/61 64 

969 23 t 7.9% 230 3/17/62 65 
323 3/29/63 67 

969 703 23.0% 211 4/2/62 72 
351 4/27/63 73 

consists of six mating types where some have a com- 
mon sire. The sires and dams used in the analysis 
were assumed to be unrelated. The A for the calves 
of a mating are presented and birth weight is the 
variable to be analyzed. The effects to be estimated 
are the years in which the calves are born. The follow- 
ing matrices are utilized by the analysis. The matrix 
corresponding to the mating types is: 

1 0 
1 0 
t 0 
0 t 
0 t 
0 1 
0 0 

X I =  0 0 
0 0 
0 0 
0 0 
0 0 
0 0 
0 0 
0 0 

0 0 0 0 
0 0 0 0 
0 0 0 0 
0 0 0 0 
0 0 0 0 
0 0 0 0 
t 0 0 0 
t 0 0 0 
t 0 0 0 
0 1 0 0 
0 I 0 0 
0 0 1 0 
0 0 1 0 
0 0 0 t 1 
0 0 0 t J 

and the vector of mating type effects is 

= (i l l ,  fl , fl , fls,  
The design matrix denoting the presence or absence 
of a treatment (in this case, year effect) is 

0 

0 

0 
I 

0 

0 
I 

X ~ =  0 
0 
1 
0 
0 
0 
0 
0 

t 0 0 
0 1 0 
0 0 t 
0 0 0 
t 0 0 
0 t 0 
0 0 0 
t 0 0 
0 0 1 
0 0 0 
1 0 0 
0 t 0 
0 0 1 
0 t 0 
0 0 1 
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and the year effects are 

P' = (/11,/12, P3, P4),/.1 denotes 1960, p~ denotes t961, 

/*a denotes 1962 and/*4 denotes t963. 

The within mating type error structure is a~C where 

C = 

and where 

( (71 0 . . .  O )  
0 C 2 . . .  0 

0 0 . . .  C e 

[o.9934 0.5370 o.537o~ 
C~=~o.537o 0.9934 o.537o / 

\0.5370 0.5370 0.9934I 

/o.96oo 0.5760 o.5760~ 
02=|o.576o 0.9600 o.576o1 

\0.5760 0.5760 0.96001 

[0.8817 0.5925 0.5925~ 
G = |o.5925 o.88a7 o.5925 / 

\0.5925 0.5925 0.88171 

/o.9438 0.5838~ 
C4=\0 .5838 o.9438] 

and 

/0.9680 0.5706~ 
C5=~0.5706 0.9680} 

/0.9471 0.5825] 
C6=\0 .5825 0.947t] 

The between block or mating 
~ V where 

V =  

type error structure is 

2 0.25 0 0 0 0 
0. 5 1 0 0 o 0 

0 0 t 0.25 0 0 
0 0 0.25 t 0 0 
0 0 0 0 t 0.25 
0 0 0 0 0.25 t 

The off diagonal elements are 0.25 because those 
mating types have a common sire. Using equation 
(2.7) and following, the intramating type estimate 
of p is 

/ - -6 .979 \  
/ --4.905~ 

t~-- / 5.o95/. 
\ 6.789/ 

The value of Q = y ' ( I  -- X X - )  y is tt.94, thus 

A 2  __= Q _ _  
~re tr(C) - - t r (XX-C)-  1t.94/2.267 = 5.277. 

The variance-covariance matrix of intramating type 
estimators is 82[X;F'(FUF') -1 FX~]- or 

0.60190 -0.03592 -0.30000 -0.26600\ 
-0.03592 0.45210 -0.22060 -0.19560 / 
-0.30000 -0.22060 -0.55460 -0.03397]" 
-0.26600 -0.19560 -0.03397 9.49550/ 

We next look for the intermating type estimator 
of/*. The intermating type model is X~y = X~X2# + 
+ e 2 o r  

t961 l 
2191 = 1 
t271 t 
t32[ 0 

t441 [0 0 

Before the intermating 
~ must be estimated. 
and the estimate of ~' is 

178.8 36.52 0 
36.52 179.5 0 

~ =  0 0 
0 0 
0 0 

[ o o 

t t 

t 0 t #2 + % 
0 0 bta 
t I /z4 

t l 

type estimate is computed, 
The estimate is 82 == 16.23, 

~176 0 o 
t78.8 24.35 0 

24.35 8t.04 0 
0 0 81.t6 t6.23[ 
0 0 16.23 8t.06 / 

The weighted intermating type estimate is 

/ - - 2 7 . 6 1 \  
^ [ 23.44~ 
/*~ = ~- - t0 .29]  

k t4.46/ 

with estimated covariance matrix 

202.70 -203.00 -20.39 20.64\ 
-203.00 232.50 t.39 -30.94 / 

-20.39 t.39 100.30 -8t .29]  
20.64 -30.94 -81.29 91.59/ 

The combined estimate is 

/ - -6 .914 \  
/ - 4 . 8 0 2  / 

tic = ~ 4.965] 
\ 6.750 ~ 

with estimated covariance matrix, 

0.5894 -0.04364 -0.2897 -0.2561\ 
-0.04364 0.4463 -0.2t36 -o.1891~ 
-0.2897 -o.2t36 0.5448 -o.o4t5]" 
-0.2561 -0.1891 -0.0415 0.4867/ 

Note that the estimated variances of the combined 
estimate are smaller than the estimated variances of 
the other two estimates. Thus the combined estimate 
appears to be the best of the three estimates. 
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